3.959 \(\int \frac{\sec ^2(c+d x) (A+B \sec (c+d x)+C \sec ^2(c+d x))}{\sqrt{a+b \sec (c+d x)}} \, dx\)

Optimal. Leaf size=342 \[ -\frac{2 \sqrt{a+b} \cot (c+d x) \left (8 a^2 C-2 a b (5 B+C)+15 A b^2-b^2 (5 B-9 C)\right ) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (\sec (c+d x)+1)}{a-b}} \text{EllipticF}\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right ),\frac{a+b}{a-b}\right )}{15 b^3 d}-\frac{2 (a-b) \sqrt{a+b} \cot (c+d x) \left (8 a^2 C-10 a b B+15 A b^2+9 b^2 C\right ) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right )}{15 b^4 d}+\frac{2 (5 b B-4 a C) \tan (c+d x) \sqrt{a+b \sec (c+d x)}}{15 b^2 d}+\frac{2 C \tan (c+d x) \sec (c+d x) \sqrt{a+b \sec (c+d x)}}{5 b d} \]

[Out]

(-2*(a - b)*Sqrt[a + b]*(15*A*b^2 - 10*a*b*B + 8*a^2*C + 9*b^2*C)*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Sec
[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(
a - b))])/(15*b^4*d) - (2*Sqrt[a + b]*(15*A*b^2 - b^2*(5*B - 9*C) + 8*a^2*C - 2*a*b*(5*B + C))*Cot[c + d*x]*El
lipticF[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sq
rt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(15*b^3*d) + (2*(5*b*B - 4*a*C)*Sqrt[a + b*Sec[c + d*x]]*Tan[c + d*x])/
(15*b^2*d) + (2*C*Sec[c + d*x]*Sqrt[a + b*Sec[c + d*x]]*Tan[c + d*x])/(5*b*d)

________________________________________________________________________________________

Rubi [A]  time = 0.664079, antiderivative size = 342, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 43, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.116, Rules used = {4092, 4082, 4005, 3832, 4004} \[ -\frac{2 \sqrt{a+b} \cot (c+d x) \left (8 a^2 C-2 a b (5 B+C)+15 A b^2-b^2 (5 B-9 C)\right ) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (\sec (c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right )}{15 b^3 d}-\frac{2 (a-b) \sqrt{a+b} \cot (c+d x) \left (8 a^2 C-10 a b B+15 A b^2+9 b^2 C\right ) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right )}{15 b^4 d}+\frac{2 (5 b B-4 a C) \tan (c+d x) \sqrt{a+b \sec (c+d x)}}{15 b^2 d}+\frac{2 C \tan (c+d x) \sec (c+d x) \sqrt{a+b \sec (c+d x)}}{5 b d} \]

Antiderivative was successfully verified.

[In]

Int[(Sec[c + d*x]^2*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/Sqrt[a + b*Sec[c + d*x]],x]

[Out]

(-2*(a - b)*Sqrt[a + b]*(15*A*b^2 - 10*a*b*B + 8*a^2*C + 9*b^2*C)*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Sec
[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(
a - b))])/(15*b^4*d) - (2*Sqrt[a + b]*(15*A*b^2 - b^2*(5*B - 9*C) + 8*a^2*C - 2*a*b*(5*B + C))*Cot[c + d*x]*El
lipticF[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sq
rt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(15*b^3*d) + (2*(5*b*B - 4*a*C)*Sqrt[a + b*Sec[c + d*x]]*Tan[c + d*x])/
(15*b^2*d) + (2*C*Sec[c + d*x]*Sqrt[a + b*Sec[c + d*x]]*Tan[c + d*x])/(5*b*d)

Rule 4092

Int[csc[(e_.) + (f_.)*(x_)]^2*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(
e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> -Simp[(C*Csc[e + f*x]*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m
 + 1))/(b*f*(m + 3)), x] + Dist[1/(b*(m + 3)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m*Simp[a*C + b*(C*(m + 2)
 + A*(m + 3))*Csc[e + f*x] - (2*a*C - b*B*(m + 3))*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m
}, x] && NeQ[a^2 - b^2, 0] &&  !LtQ[m, -1]

Rule 4082

Int[csc[(e_.) + (f_.)*(x_)]*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_
.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> -Simp[(C*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1))/(b*f*(m
+ 2)), x] + Dist[1/(b*(m + 2)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m*Simp[b*A*(m + 2) + b*C*(m + 1) + (b*B*
(m + 2) - a*C)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] &&  !LtQ[m, -1]

Rule 4005

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Dist[A - B, Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] + Dist[B, Int[(Csc[e + f*x]*(1 +
 Csc[e + f*x]))/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && NeQ[A
^2 - B^2, 0]

Rule 3832

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(-2*Rt[a + b, 2]*Sqr
t[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[-((b*(1 + Csc[e + f*x]))/(a - b))]*EllipticF[ArcSin[Sqrt[a + b*Csc[e +
f*x]]/Rt[a + b, 2]], (a + b)/(a - b)])/(b*f*Cot[e + f*x]), x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4004

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Simp[(-2*(A*b - a*B)*Rt[a + (b*B)/A, 2]*Sqrt[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[-((b*(1 + Cs
c[e + f*x]))/(a - b))]*EllipticE[ArcSin[Sqrt[a + b*Csc[e + f*x]]/Rt[a + (b*B)/A, 2]], (a*A + b*B)/(a*A - b*B)]
)/(b^2*f*Cot[e + f*x]), x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]

Rubi steps

\begin{align*} \int \frac{\sec ^2(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sqrt{a+b \sec (c+d x)}} \, dx &=\frac{2 C \sec (c+d x) \sqrt{a+b \sec (c+d x)} \tan (c+d x)}{5 b d}+\frac{2 \int \frac{\sec (c+d x) \left (a C+\frac{1}{2} b (5 A+3 C) \sec (c+d x)+\frac{1}{2} (5 b B-4 a C) \sec ^2(c+d x)\right )}{\sqrt{a+b \sec (c+d x)}} \, dx}{5 b}\\ &=\frac{2 (5 b B-4 a C) \sqrt{a+b \sec (c+d x)} \tan (c+d x)}{15 b^2 d}+\frac{2 C \sec (c+d x) \sqrt{a+b \sec (c+d x)} \tan (c+d x)}{5 b d}+\frac{4 \int \frac{\sec (c+d x) \left (\frac{1}{4} b (5 b B+2 a C)+\frac{1}{4} \left (15 A b^2-10 a b B+8 a^2 C+9 b^2 C\right ) \sec (c+d x)\right )}{\sqrt{a+b \sec (c+d x)}} \, dx}{15 b^2}\\ &=\frac{2 (5 b B-4 a C) \sqrt{a+b \sec (c+d x)} \tan (c+d x)}{15 b^2 d}+\frac{2 C \sec (c+d x) \sqrt{a+b \sec (c+d x)} \tan (c+d x)}{5 b d}+\frac{\left (15 A b^2-10 a b B+8 a^2 C+9 b^2 C\right ) \int \frac{\sec (c+d x) (1+\sec (c+d x))}{\sqrt{a+b \sec (c+d x)}} \, dx}{15 b^2}-\frac{\left (15 A b^2-b^2 (5 B-9 C)+8 a^2 C-2 a b (5 B+C)\right ) \int \frac{\sec (c+d x)}{\sqrt{a+b \sec (c+d x)}} \, dx}{15 b^2}\\ &=-\frac{2 (a-b) \sqrt{a+b} \left (15 A b^2-10 a b B+8 a^2 C+9 b^2 C\right ) \cot (c+d x) E\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right ) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (1+\sec (c+d x))}{a-b}}}{15 b^4 d}-\frac{2 \sqrt{a+b} \left (15 A b^2-b^2 (5 B-9 C)+8 a^2 C-2 a b (5 B+C)\right ) \cot (c+d x) F\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right ) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (1+\sec (c+d x))}{a-b}}}{15 b^3 d}+\frac{2 (5 b B-4 a C) \sqrt{a+b \sec (c+d x)} \tan (c+d x)}{15 b^2 d}+\frac{2 C \sec (c+d x) \sqrt{a+b \sec (c+d x)} \tan (c+d x)}{5 b d}\\ \end{align*}

Mathematica [B]  time = 24.8959, size = 3332, normalized size = 9.74 \[ \text{Result too large to show} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(Sec[c + d*x]^2*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/Sqrt[a + b*Sec[c + d*x]],x]

[Out]

(Cos[c + d*x]*(b + a*Cos[c + d*x])*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)*((4*(15*A*b^2 - 10*a*b*B + 8*a^2*C
+ 9*b^2*C)*Sin[c + d*x])/(15*b^3) + (4*Sec[c + d*x]*(5*b*B*Sin[c + d*x] - 4*a*C*Sin[c + d*x]))/(15*b^2) + (4*C
*Sec[c + d*x]*Tan[c + d*x])/(5*b)))/(d*(A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x])*Sqrt[a + b*Sec[c + d*
x]]) + (4*((-2*A)/(Sqrt[b + a*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]) + (4*a*B)/(3*b*Sqrt[b + a*Cos[c + d*x]]*Sqrt[S
ec[c + d*x]]) - (6*C)/(5*Sqrt[b + a*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]) - (16*a^2*C)/(15*b^2*Sqrt[b + a*Cos[c +
d*x]]*Sqrt[Sec[c + d*x]]) - (2*a*A*Sqrt[Sec[c + d*x]])/(b*Sqrt[b + a*Cos[c + d*x]]) + (2*B*Sqrt[Sec[c + d*x]])
/(3*Sqrt[b + a*Cos[c + d*x]]) + (4*a^2*B*Sqrt[Sec[c + d*x]])/(3*b^2*Sqrt[b + a*Cos[c + d*x]]) - (16*a^3*C*Sqrt
[Sec[c + d*x]])/(15*b^3*Sqrt[b + a*Cos[c + d*x]]) - (14*a*C*Sqrt[Sec[c + d*x]])/(15*b*Sqrt[b + a*Cos[c + d*x]]
) - (2*a*A*Cos[2*(c + d*x)]*Sqrt[Sec[c + d*x]])/(b*Sqrt[b + a*Cos[c + d*x]]) + (4*a^2*B*Cos[2*(c + d*x)]*Sqrt[
Sec[c + d*x]])/(3*b^2*Sqrt[b + a*Cos[c + d*x]]) - (16*a^3*C*Cos[2*(c + d*x)]*Sqrt[Sec[c + d*x]])/(15*b^3*Sqrt[
b + a*Cos[c + d*x]]) - (6*a*C*Cos[2*(c + d*x)]*Sqrt[Sec[c + d*x]])/(5*b*Sqrt[b + a*Cos[c + d*x]]))*Sqrt[Cos[(c
 + d*x)/2]^2*Sec[c + d*x]]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)*(-2*(a + b)*(15*A*b^2 - 10*a*b*B + 8*a^2*C
+ 9*b^2*C)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*Ellip
ticE[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] + 2*b*(15*A*b^2 + 8*a^2*C + 2*a*b*(-5*B + C) + b^2*(5*B + 9*C)
)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcS
in[Tan[(c + d*x)/2]], (a - b)/(a + b)] - (15*A*b^2 - 10*a*b*B + 8*a^2*C + 9*b^2*C)*Cos[c + d*x]*(b + a*Cos[c +
 d*x])*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2]))/(15*b^3*d*(A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x])*Sqrt[
Sec[(c + d*x)/2]^2]*Sec[c + d*x]^(3/2)*Sqrt[a + b*Sec[c + d*x]]*((2*a*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*Si
n[c + d*x]*(-2*(a + b)*(15*A*b^2 - 10*a*b*B + 8*a^2*C + 9*b^2*C)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b
 + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] + 2*b*(1
5*A*b^2 + 8*a^2*C + 2*a*b*(-5*B + C) + b^2*(5*B + 9*C))*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[
c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] - (15*A*b^2 - 10*
a*b*B + 8*a^2*C + 9*b^2*C)*Cos[c + d*x]*(b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2]))/(15*b^3*(b
+ a*Cos[c + d*x])^(3/2)*Sqrt[Sec[(c + d*x)/2]^2]) - (2*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*Tan[(c + d*x)/2]*
(-2*(a + b)*(15*A*b^2 - 10*a*b*B + 8*a^2*C + 9*b^2*C)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c
+ d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] + 2*b*(15*A*b^2 + 8
*a^2*C + 2*a*b*(-5*B + C) + b^2*(5*B + 9*C))*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/(
(a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] - (15*A*b^2 - 10*a*b*B + 8*a
^2*C + 9*b^2*C)*Cos[c + d*x]*(b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2]))/(15*b^3*Sqrt[b + a*Cos
[c + d*x]]*Sqrt[Sec[(c + d*x)/2]^2]) + (4*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*(-((15*A*b^2 - 10*a*b*B + 8*a^
2*C + 9*b^2*C)*Cos[c + d*x]*(b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^4)/2 - ((a + b)*(15*A*b^2 - 10*a*b*B + 8*a^2
*C + 9*b^2*C)*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (a -
 b)/(a + b)]*((Cos[c + d*x]*Sin[c + d*x])/(1 + Cos[c + d*x])^2 - Sin[c + d*x]/(1 + Cos[c + d*x])))/Sqrt[Cos[c
+ d*x]/(1 + Cos[c + d*x])] + (b*(15*A*b^2 + 8*a^2*C + 2*a*b*(-5*B + C) + b^2*(5*B + 9*C))*Sqrt[(b + a*Cos[c +
d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*((Cos[c + d*x]*Sin[c
+ d*x])/(1 + Cos[c + d*x])^2 - Sin[c + d*x]/(1 + Cos[c + d*x])))/Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])] - ((a +
 b)*(15*A*b^2 - 10*a*b*B + 8*a^2*C + 9*b^2*C)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*EllipticE[ArcSin[Tan[(c +
d*x)/2]], (a - b)/(a + b)]*(-((a*Sin[c + d*x])/((a + b)*(1 + Cos[c + d*x]))) + ((b + a*Cos[c + d*x])*Sin[c + d
*x])/((a + b)*(1 + Cos[c + d*x])^2)))/Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))] + (b*(15*A*b^2 +
 8*a^2*C + 2*a*b*(-5*B + C) + b^2*(5*B + 9*C))*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*EllipticF[ArcSin[Tan[(c +
 d*x)/2]], (a - b)/(a + b)]*(-((a*Sin[c + d*x])/((a + b)*(1 + Cos[c + d*x]))) + ((b + a*Cos[c + d*x])*Sin[c +
d*x])/((a + b)*(1 + Cos[c + d*x])^2)))/Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))] + a*(15*A*b^2 -
 10*a*b*B + 8*a^2*C + 9*b^2*C)*Cos[c + d*x]*Sec[(c + d*x)/2]^2*Sin[c + d*x]*Tan[(c + d*x)/2] + (15*A*b^2 - 10*
a*b*B + 8*a^2*C + 9*b^2*C)*(b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Sin[c + d*x]*Tan[(c + d*x)/2] - (15*A*b^2 -
 10*a*b*B + 8*a^2*C + 9*b^2*C)*Cos[c + d*x]*(b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2]^2 + (b*(1
5*A*b^2 + 8*a^2*C + 2*a*b*(-5*B + C) + b^2*(5*B + 9*C))*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[
c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*Sec[(c + d*x)/2]^2)/(Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[1 - ((a - b)*Ta
n[(c + d*x)/2]^2)/(a + b)]) - ((a + b)*(15*A*b^2 - 10*a*b*B + 8*a^2*C + 9*b^2*C)*Sqrt[Cos[c + d*x]/(1 + Cos[c
+ d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*Sec[(c + d*x)/2]^2*Sqrt[1 - ((a - b)*Tan[(c +
 d*x)/2]^2)/(a + b)])/Sqrt[1 - Tan[(c + d*x)/2]^2]))/(15*b^3*Sqrt[b + a*Cos[c + d*x]]*Sqrt[Sec[(c + d*x)/2]^2]
) + (2*(-2*(a + b)*(15*A*b^2 - 10*a*b*B + 8*a^2*C + 9*b^2*C)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a
*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] + 2*b*(15*A*
b^2 + 8*a^2*C + 2*a*b*(-5*B + C) + b^2*(5*B + 9*C))*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c +
d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] - (15*A*b^2 - 10*a*b*
B + 8*a^2*C + 9*b^2*C)*Cos[c + d*x]*(b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2])*(-(Cos[(c + d*x)
/2]*Sec[c + d*x]*Sin[(c + d*x)/2]) + Cos[(c + d*x)/2]^2*Sec[c + d*x]*Tan[c + d*x]))/(15*b^3*Sqrt[b + a*Cos[c +
 d*x]]*Sqrt[Sec[(c + d*x)/2]^2]*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]])))

________________________________________________________________________________________

Maple [B]  time = 0.871, size = 3147, normalized size = 9.2 \begin{align*} \text{output too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^2*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(1/2),x)

[Out]

-2/15/d/b^3*(cos(d*x+c)+1)^2*((b+a*cos(d*x+c))/cos(d*x+c))^(1/2)*(-1+cos(d*x+c))^2*(-8*C*cos(d*x+c)^3*a^3+15*A
*cos(d*x+c)^4*a*b^2-15*A*cos(d*x+c)^3*a*b^2+10*B*cos(d*x+c)^3*sin(d*x+c)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/
(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a^2*b+9
*C*sin(d*x+c)*cos(d*x+c)^3*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*E
llipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*b^3-8*C*sin(d*x+c)*cos(d*x+c)^2*(cos(d*x+c)/(cos(d*x+
c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b)
)^(1/2))*a^3-9*C*sin(d*x+c)*cos(d*x+c)^2*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+
c)+1))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*b^3+9*C*sin(d*x+c)*cos(d*x+c)^2*(cos(d*
x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c
),((a-b)/(a+b))^(1/2))*b^3+5*B*cos(d*x+c)^3*sin(d*x+c)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x
+c))/(cos(d*x+c)+1))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*b^3+5*B*cos(d*x+c)^2*sin(
d*x+c)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF((-1+cos(d*x
+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*b^3+10*B*cos(d*x+c)^3*sin(d*x+c)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+
b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a*b^2-10*B
*cos(d*x+c)^3*sin(d*x+c)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*Ell
ipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a*b^2+10*B*cos(d*x+c)^2*sin(d*x+c)*(cos(d*x+c)/(cos(d*x
+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b
))^(1/2))*a^2*b+10*B*cos(d*x+c)^2*sin(d*x+c)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(
d*x+c)+1))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a*b^2-10*B*cos(d*x+c)^2*sin(d*x+c)*
(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF((-1+cos(d*x+c))/si
n(d*x+c),((a-b)/(a+b))^(1/2))*a*b^2-8*C*sin(d*x+c)*cos(d*x+c)^2*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+
a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a^2*b-9*C*sin(d*
x+c)*cos(d*x+c)^2*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE(
(-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a*b^2+8*C*sin(d*x+c)*cos(d*x+c)^2*(cos(d*x+c)/(cos(d*x+c)+1))^
(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2)
)*a^2*b+2*C*sin(d*x+c)*cos(d*x+c)^2*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1)
)^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a*b^2-8*C*sin(d*x+c)*cos(d*x+c)^3*(cos(d*x+c
)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(
(a-b)/(a+b))^(1/2))*a^2*b-9*C*sin(d*x+c)*cos(d*x+c)^3*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+
c))/(cos(d*x+c)+1))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a*b^2+8*C*sin(d*x+c)*cos(d
*x+c)^3*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF((-1+cos(d*
x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a^2*b+2*C*sin(d*x+c)*cos(d*x+c)^3*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(
a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a*b^2-15
*A*cos(d*x+c)^2*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE((-
1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*a*b^2-15*A*cos(d*x+c)^3*(cos(d*x+c)/(cos(d*x+c)+1))^(
1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))
*sin(d*x+c)*a*b^2-4*C*cos(d*x+c)^4*a^2*b+9*C*cos(d*x+c)^4*a*b^2+8*C*cos(d*x+c)^3*a^2*b-10*C*cos(d*x+c)^3*a*b^2
+C*cos(d*x+c)*a*b^2-10*B*cos(d*x+c)^3*a*b^2+5*B*cos(d*x+c)^2*a*b^2-10*B*cos(d*x+c)^4*a^2*b+5*B*cos(d*x+c)^4*a*
b^2+10*B*cos(d*x+c)^3*a^2*b-4*C*cos(d*x+c)^2*a^2*b+8*C*cos(d*x+c)^4*a^3+9*C*cos(d*x+c)^3*b^3-6*C*cos(d*x+c)^2*
b^3+5*B*cos(d*x+c)^3*b^3-5*B*cos(d*x+c)*b^3-8*C*sin(d*x+c)*cos(d*x+c)^3*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(
a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a^3-9*C*
sin(d*x+c)*cos(d*x+c)^3*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*Elli
pticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*b^3-15*A*cos(d*x+c)^2*b^3+15*A*cos(d*x+c)^3*b^3+15*A*cos
(d*x+c)^2*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF((-1+cos(
d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*b^3-15*A*cos(d*x+c)^2*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/
(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x
+c)*b^3+15*A*cos(d*x+c)^3*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*El
lipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*b^3-15*A*cos(d*x+c)^3*(cos(d*x+c)/(cos(d*x+
c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b)
)^(1/2))*sin(d*x+c)*b^3-3*C*b^3)/(b+a*cos(d*x+c))/cos(d*x+c)^2/sin(d*x+c)^5

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{C \sec \left (d x + c\right )^{4} + B \sec \left (d x + c\right )^{3} + A \sec \left (d x + c\right )^{2}}{\sqrt{b \sec \left (d x + c\right ) + a}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

integral((C*sec(d*x + c)^4 + B*sec(d*x + c)^3 + A*sec(d*x + c)^2)/sqrt(b*sec(d*x + c) + a), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (A + B \sec{\left (c + d x \right )} + C \sec ^{2}{\left (c + d x \right )}\right ) \sec ^{2}{\left (c + d x \right )}}{\sqrt{a + b \sec{\left (c + d x \right )}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**2*(A+B*sec(d*x+c)+C*sec(d*x+c)**2)/(a+b*sec(d*x+c))**(1/2),x)

[Out]

Integral((A + B*sec(c + d*x) + C*sec(c + d*x)**2)*sec(c + d*x)**2/sqrt(a + b*sec(c + d*x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} \sec \left (d x + c\right )^{2}}{\sqrt{b \sec \left (d x + c\right ) + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*sec(d*x + c)^2/sqrt(b*sec(d*x + c) + a), x)